

Time integration schemes for numerical weather prediction

Colm Clancy

Janusz Pudykiewicz

25th of March 2014

Motivation

Williams (MWR, 2009):

Time-stepping

"...has received scant attention compared to the extensive research efforts devoted..."

Page 2 – 25 March, 2014

Motivation

Williams (MWR, 2011):

"Contemporary atmospheric and oceanic numerical simulations are typically unconverged as the time step is reduced"

"...different time-stepping schemes in AGCMs produce substantially different climates."

Page 3 – 25 March, 2014

Motivation

Heimsund and Berntsen (Ocean Modelling, 2004)

"when using methods with implicit features and low viscosity, it may happen that models are stable for longer time steps but become unstable as the time step is reduced"

Page 4 – 25 March, 2014

After spatial discretisation...

 $\frac{du}{dt} = F(u)$

Page 5 – 25 March, 2014

Two approaches to be discussed

Semi-implicit predictor-corrector methods

Clancy and Pudykiewicz (JCP, 2013)

• Exponential integration

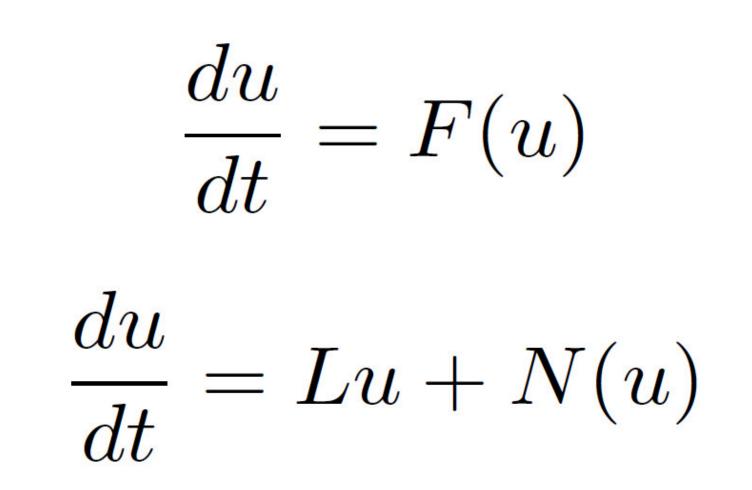
Clancy and Pudykiewicz (Tellus A, 2013)

Page 6 – 25 March, 2014

1. Semi-implicit predictor-corrector methods

Page 7 – 25 March, 2014

Separate 'fast' linear terms



Page 8 – 25 March, 2014

Traditional semi-implicit (SILF)

$$\frac{u_{n+1} - u_{n-1}}{2\Delta t} = \frac{Lu_{n+1} + Lu_{n-1}}{2} + N(u_n)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Implicit (trapezoidal) Leapfrog

Page 9 – 25 March, 2014

Traditional semi-implicit (SILF)

$$\frac{u_{n+1} - u_{n-1}}{2\Delta t} = \frac{Lu_{n+1} + Lu_{n-1}}{2} + N(u_n)$$

Need for Robert-Asselin filter: reduces accuracy and stability

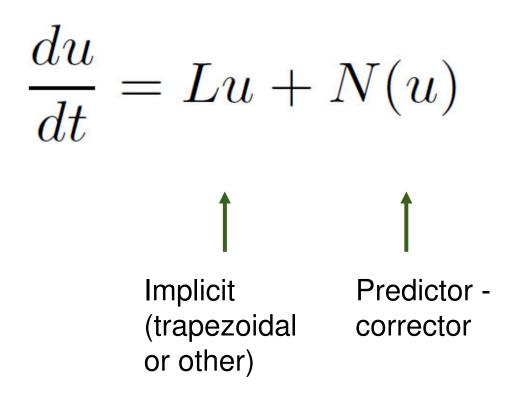
Proposed improvements:

nvironment Environnement anada Canada

Williams (MWR; 2009, 2011, 2013) Li and Trenchea (JCP, 2014) Moustaoui et al. (MWR, 2014) Durran and Blossey (MWR, 2012)

Page 10 – 25 March, 2014

Proposed alternative



Predictor-corrector for nonlinear terms

Leapfrog trapezoidal (LFT)

Environment Environnement

Canada

Canada

Kurihara (MWR, 1965)

$$\frac{u_* - u_{n-1}}{2\,\Delta t} = N(u_n)$$

$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{1}{2}N(u_*) + \frac{1}{2}N(u_n)$$

Page 12 – 25 March, 2014

Predictor-corrector for nonlinear terms

Adams-Bashforth trapezoidal (**ABT**) Kar (MWR, 2012)

$$\frac{u_* - u_n}{\Delta t} = \frac{3}{2}N(u_n) - \frac{1}{2}N(u_{n-1})$$
$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{1}{2}N(u_*) + \frac{1}{2}N(u_n)$$

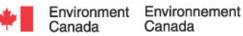
Page 13 – 25 March, 2014

Predictor-corrector for nonlinear terms

Adams-Bashforth-Moulton (**ABM**) Durran (1999)

$$\frac{u_* - u_n}{\Delta t} = \frac{3}{2}N(u_n) - \frac{1}{2}N(u_{n-1})$$
$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{5}{12}N(u_*) + \frac{8}{12}N(u_n) - \frac{1}{12}N(u_{n-1})$$

Page 14 – 25 March, 2014



Implicit for linear terms

Trapezoidal (T)

$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{1}{2}Lu_{n+1} + \frac{1}{2}Lu_n$$

AM2*: Durran and Blossey (MWR, 2012)

$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{3}{4}Lu_{n+1} + \frac{1}{4}Lu_{n-1}$$

Page 15 – 25 March, 2014

Sample combinations: T-ABT

$$\frac{u_* - u_n}{\Delta t} = \frac{1}{2}Lu_* + \frac{1}{2}Lu_n + \frac{3}{2}N(u_n) - \frac{1}{2}N(u_{n-1})$$

$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{1}{2}Lu_{n+1} + \frac{1}{2}Lu_n + \frac{1}{2}N(u_*) + \frac{1}{2}N(u_n)$$

Page 16 – 25 March, 2014

Environment Environnement Canada

Sample combinations: AM2*-ABM

$$\frac{u_* - u_n}{\Delta t} = \frac{3}{4}Lu_* + \frac{1}{4}Lu_{n-1} + \frac{3}{2}N(u_n) - \frac{1}{2}N(u_{n-1})$$

$$\frac{u_{n+1} - u_n}{\Delta t} = \frac{3}{4}Lu_{n+1} + \frac{1}{4}Lu_{n-1} + \frac{5}{12}N(u_*) + \frac{8}{12}N(u_n) - \frac{1}{12}N(u_{n-1})$$

Page 17 – 25 March, 2014

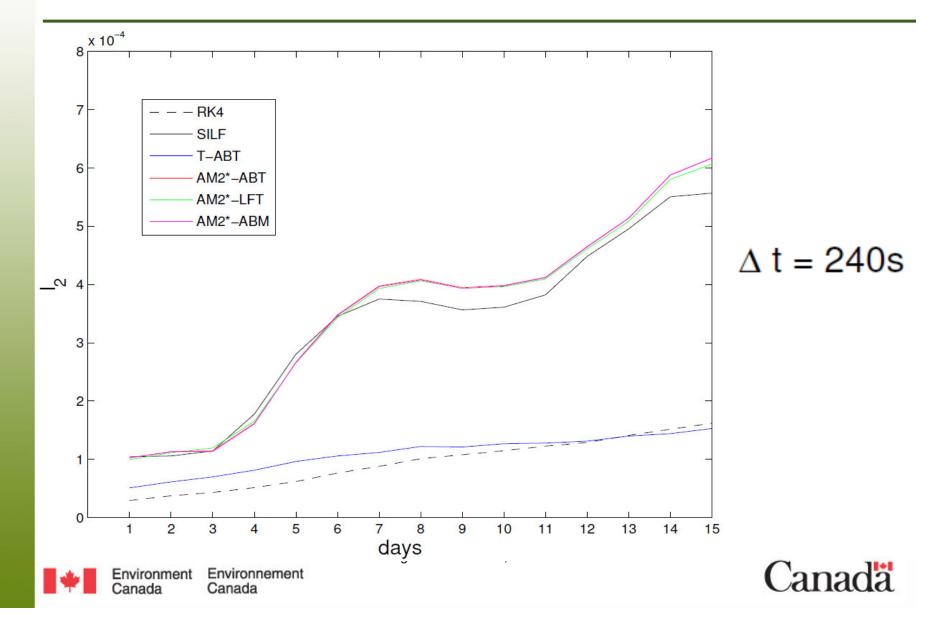
Environment Environnement Canada

Shallow water tests

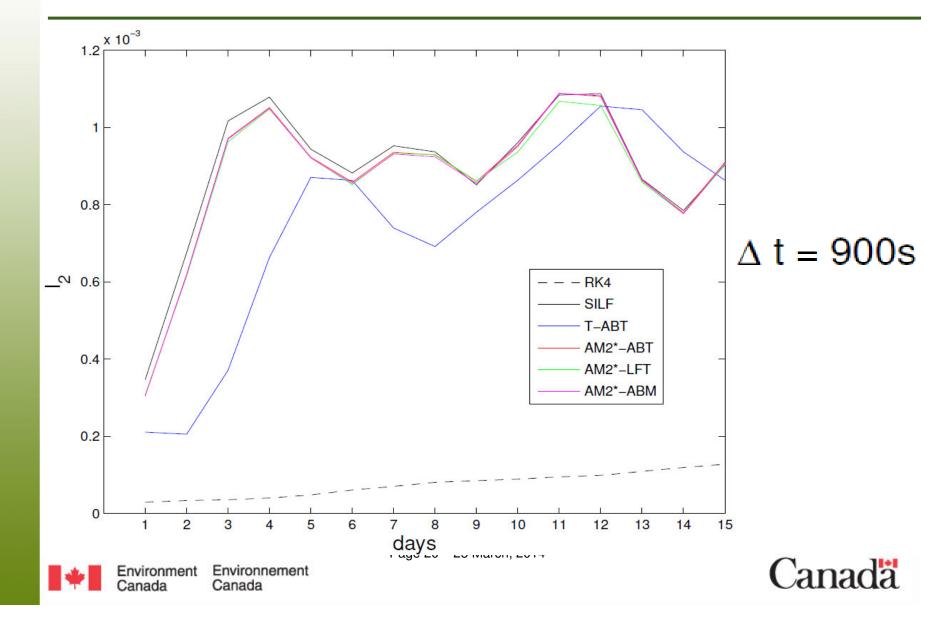
- Shallow water model of Pudykiewicz (JCP, 2011)
- Iterative GCR(4) solver for Helmholtz equations (Smolarkiewicz and Margolin, 2000)
- No explicit diffusion
- Filter of Williams (MWR, 2011) for the semi-implicit leapfrog
- Spatial resolution: grid 6 (40,962 nodes, ~112km).
 Reference: grid 7 (163,842 nodes, ~56km) with RK4 at 90s time-step

Page 18 – 25 March, 2014

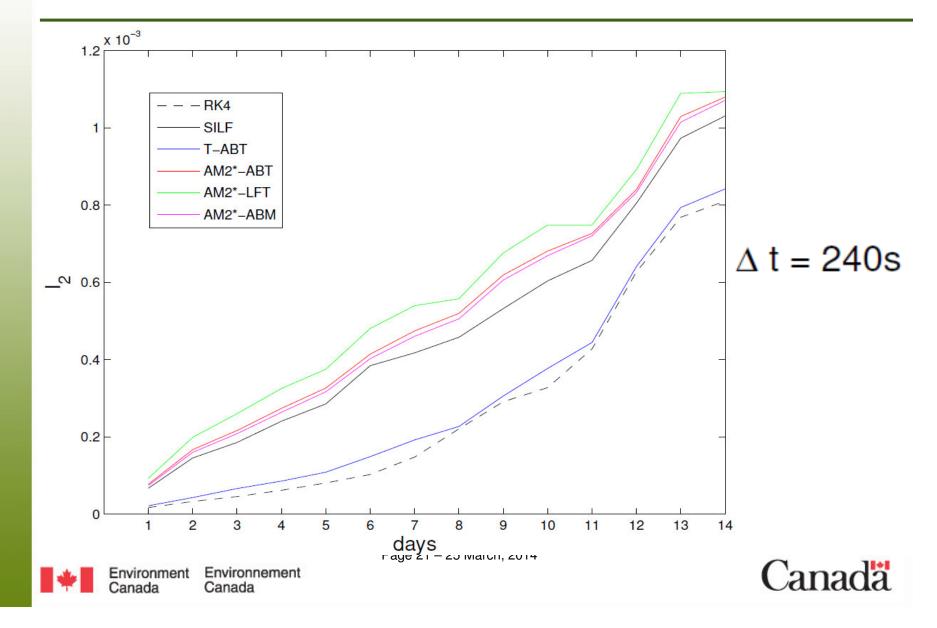
Williamson et al. (1992) – Mountain case



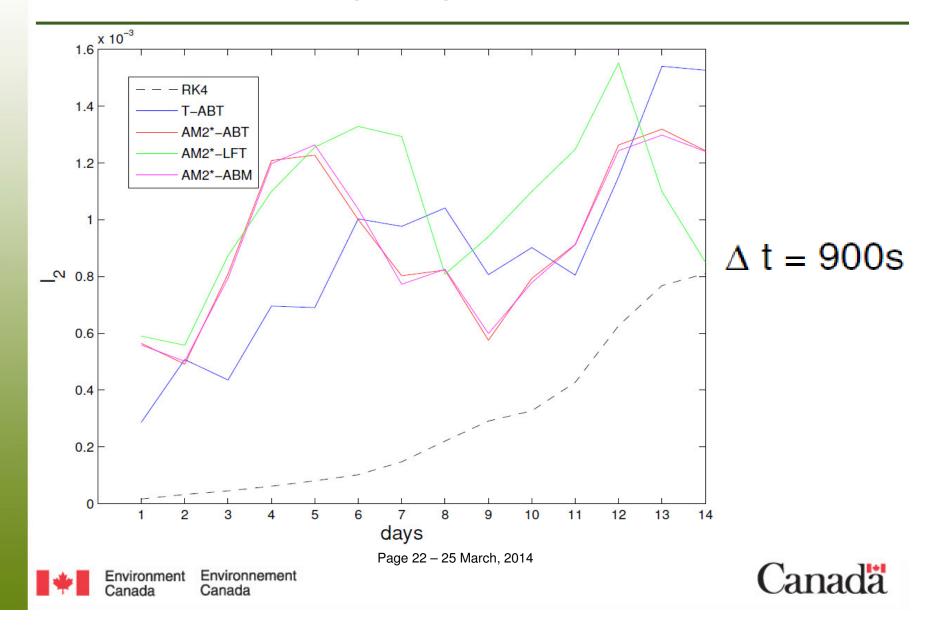
Williamson et al. (1992) – Mountain case



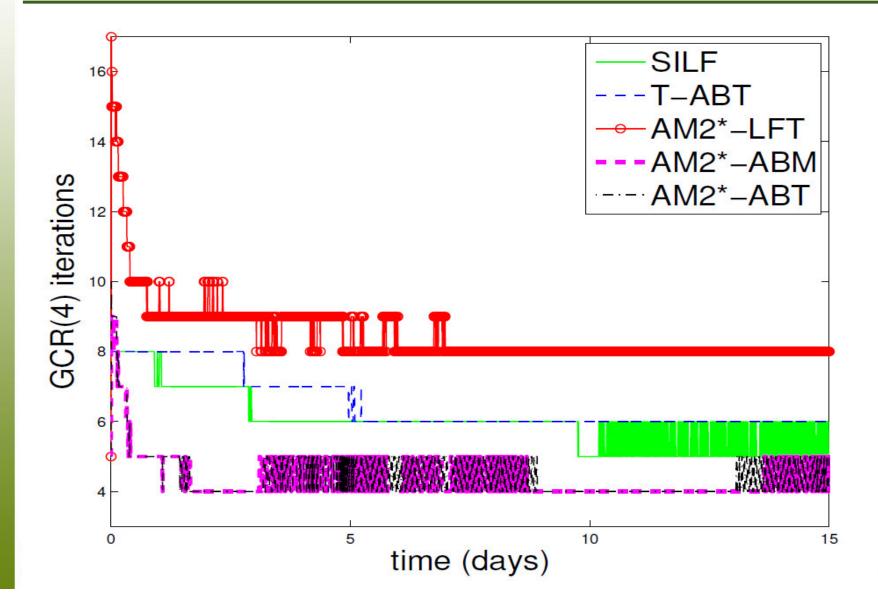
Williamson et al. (1992) – RH wave case



Williamson et al. (1992) – RH wave case



Efficiency



Conclusions from linear analysis & numerical tests

Semi-implicit predictor-corrector methods as an alternative to traditional semi-implicit:

- Accuracy comparable or better
- Better stability
- No time filter required
- Efficiency not affected

Clancy and Pudykiewicz (JCP, 2013)

Page 24 – 25 March, 2014

2. Exponential integration

Page 25 – 25 March, 2014

Linear ODE: integrating factors

$$\frac{dy}{dt} = c y, \qquad y(0) = 1$$

$$y(t) = e^{ct}$$

Environment Environnement Canada Canada Page 26 – 25 March, 2014

Linear ODE: integrating factors

$$\frac{dy}{dt} = c y, \qquad y(0) = 1$$

$$\frac{dy}{dt}e^{-ct} = c\,y\,e^{-ct}$$

Environment Environnement Canada Canada Page 27 – 25 March, 2014

Linear ODE: integrating factors

$$\frac{dy}{dt} = c y + r, \qquad y(0) = 1$$

$$\frac{dy}{dt}e^{-ct} = c y e^{-ct} + r e^{-ct}$$

Environment Environnement Canada Canada Page 28 – 25 March, 2014

Back to discretised PDE system

$$\frac{du}{dt} = F(u)$$

Expand around time level *n*:

$$\frac{d}{dt}u(t) = F_n + J_n\left(u(t) - u_n\right) + R\left(u(t)\right)$$

$$R(u(t)) = F(u(t)) - F_n - J_n(u(t) - u_n)$$

Page 29 – 25 March, 2014

Canada

Environment Environnement Canada Canada

Integrating factor solution: $e^{-J_n t}$

Multiply by integrating factor to get *exact* solution:

$$u_{n+1} = u_n + \left(e^{\Delta t J_n} - I\right) J_n^{-1} F_n + \int_0^{\Delta t} R\left(u(n\Delta t + s)\right) ds$$

Environment Environnement Canada Canada Page 30 – 25 March, 2014

Some options

$$u_{n+1} = u_n + (e^{\Delta t J_n} - I) J_n^{-1} F_n$$

$$u_{n+1} = u_n + (e^{\Delta t J_n} - I) J_n^{-1} F_n$$

+
$$\frac{2}{3}\Delta t \left(e^{\Delta t J_n} - I - \Delta t J_n\right) \left(\Delta t J_n\right)^{-2} R_{n-1}$$

Page 31 – 25 March, 2014

Environment Environnement Canada

Family of functions of matrix exponentials

$$\varphi_0(M) = e^M$$
$$\varphi_1(M) = \left(e^M - I\right) M^{-1}$$
$$\varphi_2(M) = \left(e^M - I - M\right) M^{-2}$$

Page 32 – 25 March, 2014

Family of functions of matrix exponentials

$$\varphi_0(M) = e^M$$

$$\varphi_1(M) = (e^M - I) M^{-1}$$

$$\varphi_2(M) = (e^M - I - M) M^{-2}$$

$$u_{n+1} = u_n + (e^{\Delta t J_n} - I) J_n^{-1} F_n$$

$$\bigcup \qquad u_{n+1} = u_n + \varphi_1(\Delta t J_n) \Delta t F_n$$

Page 33 – 25 March, 2014

Environment Environnement

Canada

Canada

Family of functions of matrix exponentials

$$u_{n+1} = u_n + (e^{\Delta t J_n} - I) J_n^{-1} F_n$$

$$+ \frac{2}{3}\Delta t \left(e^{\Delta t J_n} - I - \Delta t J_n\right) \left(\Delta t J_n\right)^{-2} R_{n-1}$$

$$u_{n+1} = u_n + \varphi_1(\Delta t J_n) \Delta t F_n + \frac{2}{3} \varphi_2(\Delta t J_n) \Delta t R_{n-1}$$

Generally looking for:
$$u_{n+1} = u_n + \sum_{k=0}^p \varphi_k(M)b_k$$

Environment Environnement

Canada

Canada

Page 34 – 25 March, 2014

Complications

$$e^M = I + M + \frac{1}{2!}M^2 + \frac{1}{3!}M^3 + \dots$$

Moler and Van Loan, (SIAM Rev 2003), Nineteen Dubious Ways to Compute the Exponential of a Matrix

Page 35 – 25 March, 2014

Hope

- Don't need matrix exponential itself; just the action on a vector
- Numerous algorithms appearing and rapidly improving
- Designed specifically for sums involving phi-functions:

$$\sum_{k=0}^{p} \varphi_k(M) b_k$$

Page 36 – 25 March, 2014

phipm: Niesen and Wright (2012)

Krylov space:

$$K_m(J,b) = \operatorname{span}\left\{b, Jb, J^2b, \dots, J^{m-1}b\right\}$$

$$J \to H_m = V_m^T J V_m \qquad m \ll N$$

Environment Environnement Canada Canada Page 37 – 25 March, 2014

expmv: Al-Mohy and Higham (2011)

$$e^J = \left(e^{s^{-1}J}\right)^s$$

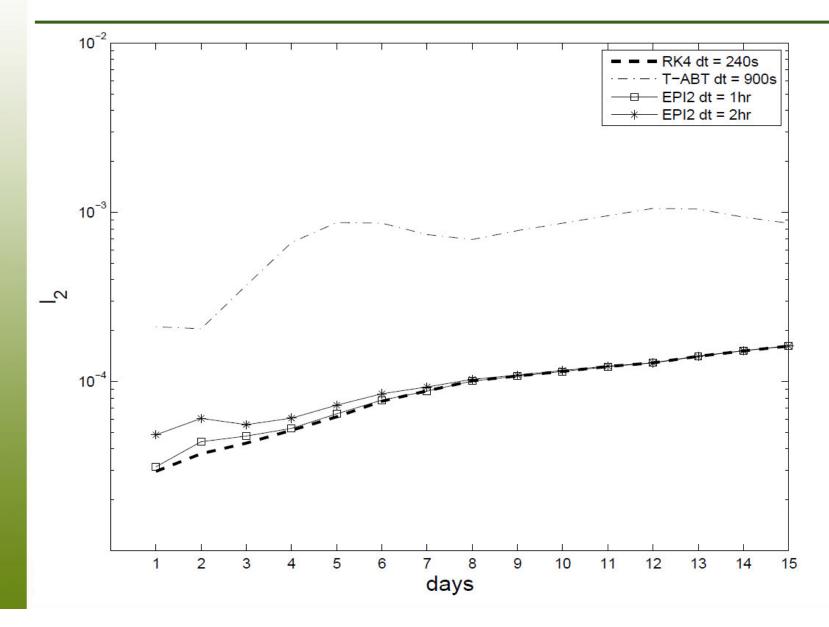
$$e^J b = \left[T_m(s^{-1}J) \right]^s b$$

Environment Environnement Canada Canada Page 38 – 25 March, 2014

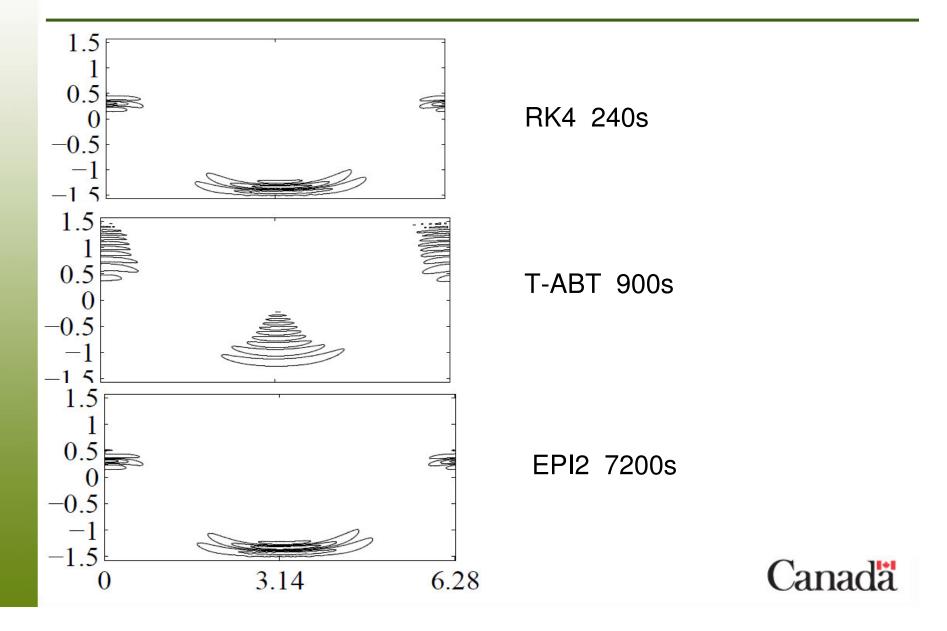
- Full details in Clancy and Pudykiewicz (Tellus A, 2013)
- Compared with explicit RK4 and the semi-implicit predictor corrector T-ABT
- **phipm** algorithm tested
- Exponential methods showed high accuracy and stability

Page 39 – 25 March, 2014

Williamson et al. (1992) – Mountain case



Galewsky et al. (2004) – divergence after 12 hours



- Full details in Clancy and Pudykiewicz (Tellus A, 2013)
- Compared with explicit RK4 and the semi-implicit predictor corrector T-ABT
- **phipm** algorithm tested
- Exponential methods showed high accuracy and stability
- Execution time comparable with the explicit

Page 42 – 25 March, 2014

Euler equations in 2D

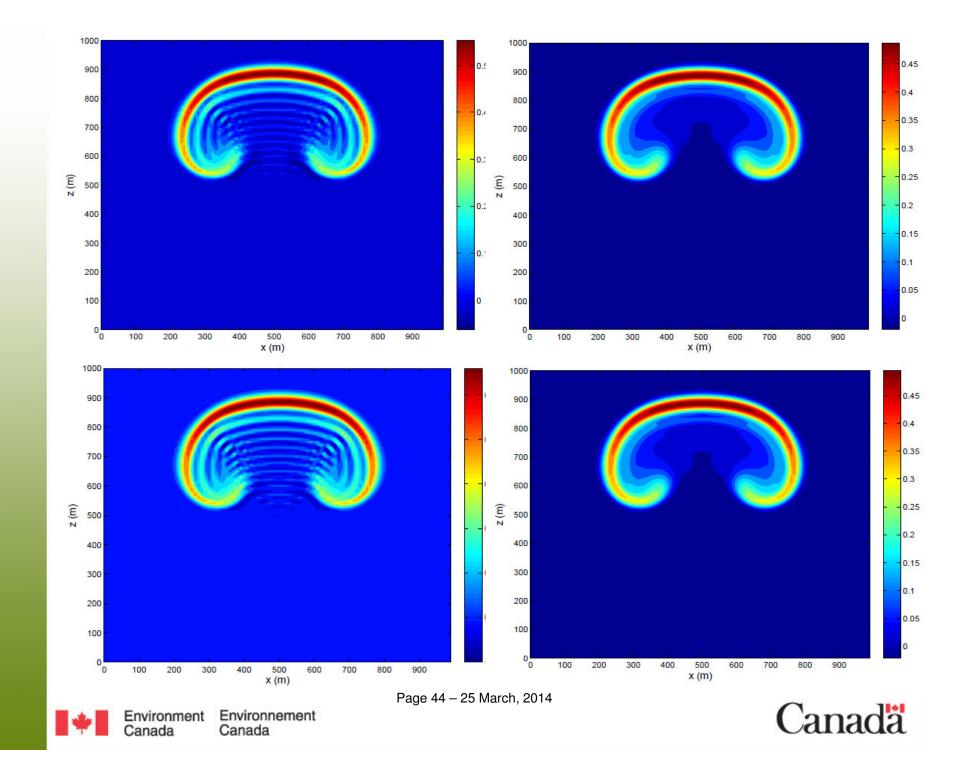
$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} &= -\mathbf{u} \cdot \nabla \mathbf{u} - c_p \theta \nabla \pi - g \mathbf{k} \\ \frac{\partial \pi}{\partial t} &= -\mathbf{u} \cdot \nabla \pi - \frac{R}{c_v} \pi \nabla \cdot \mathbf{u} \\ \frac{\partial \theta}{\partial t} &= -\mathbf{u} \cdot \nabla \theta \end{aligned}$$

Giraldo and Restelli (JCP, 2008): inertia-gravity waves, thermal bubble

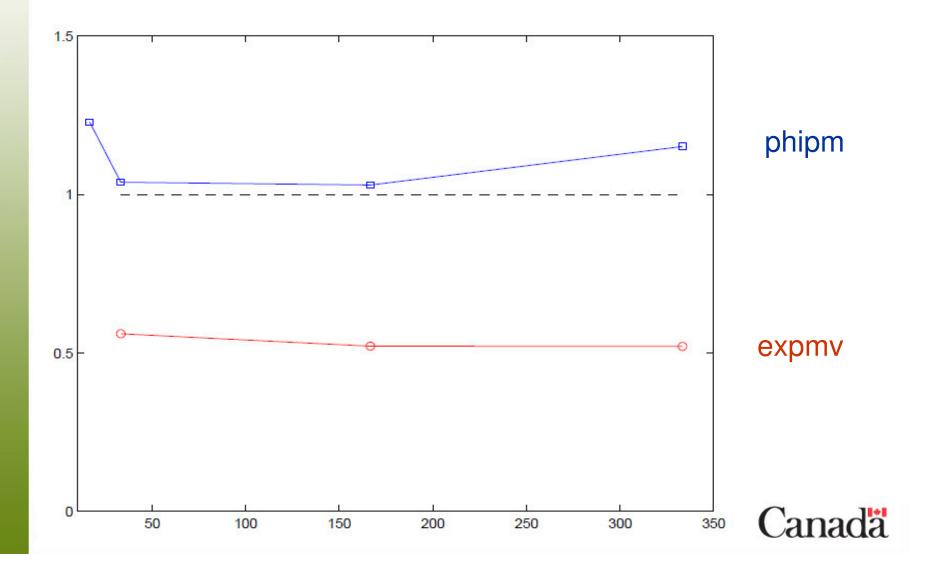
"Simple" spatial discretisation: x-z plane, unstaggered grid, centred differencing, periodic in x

*

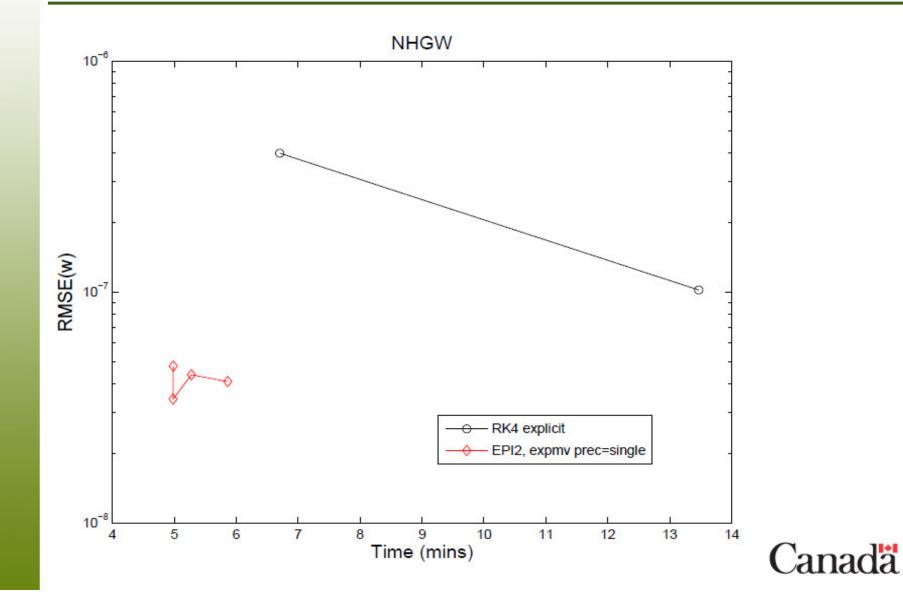
Page 43 – 25 March, 2014



Time-step vs execution time relative to explicit



Error vs execution time



Summary and future

Exponential integration methods offer very high accuracy and stability

Page 47 – 25 March, 2014

Summary and future

Exponential integration methods offer very high accuracy and stability

Improving efficiency is an ongoing effort. Algorithm progress is encouraging

Page 48 – 25 March, 2014

Summary and future

Exponential integration methods offer very high accuracy and stability

Improving efficiency is an ongoing effort. Algorithm progress is encouraging

Other uses and approaches? Advection, split vertical....

Page 49 – 25 March, 2014

