# The Global Icosahedral Model with quasi-Lagrangian Vertical Coordinate 

J. Pudykiewicz

February 2010

Numerical simulation of the atmosphere entering the second century of its development will certainly lead to new numerical models complementing the existing systems based on spectral and finite difference techniques.
The evolution of these new models will likely follow the path which could be summarized briefly in the following way:

- removal of shallow atmosphere approximation
- arbitrary geoid shape
- Euler equations
- spatial discretization based on flexible finite volume schemes
- new time integration schemes
- realistic coupling to world ocean model
- flexible discretization allowing adaptive changes of the model resolution
- grid size selected to resolve convective clouds on a global scale
- redefinition of the concept of parameterizations
- chemical and aerosol processes fully coupled with dynamics
- new forcings related to space weather data


## Main trends

Increasing tendency towards unified global nonhydrostatic models

Tendency towards global gridpoint models
Introduction of quasi-homogeneous, quasi-isotropic grids ( geodesic grid based on Platonic polyhedra )

New formulation principles based on Hamiltonian formalism, Lie groups and theory of differentiable manifolds

## Important examples of these trends

UK Met Office Unified Model - emphasis on deep atmosphere nonstandard formulation of the Geophysical Fluid Dynamics

NICAM - global cloud resolving model (Earth Simulator)
WRF - emphasis on new numerical methods
ICON - Hamiltonian formalism (Max Planck Institute)


## Horizontal discretization

One of the elements of the design of new models is the selection of the horizontal discretization.


LATITUDE-LONGITUDE GRID


## KURIHARA OR REDUCED GRID



COMPOSITE OR OVERSET GRID


FIBONACCI GRID



## COMPOSITE MESH CUBED SPHERE GRID

COMPOSITE OR OVERSET GRID



YANG GRID


YIN-YANG GRID


## SPHERICAL GEODESIC

 OR ICOSAHEDRAL GRID


Icosahedral geodesic grids

| $k$ | $2^{2 k}$ | Number of faces <br> $N_{\mathrm{f}}(k)=2^{2 k} N_{\mathrm{f}}(0)$ | Number of edges <br> $N_{\mathrm{e}}(k)=\frac{3}{2} N_{\mathrm{f}}(k)$ | Number of vertices <br> $N_{\mathrm{p}}(k)=\frac{1}{2} N_{\mathrm{f}}(k)+2$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 20 | 30 | 12 |
| 1 | 4 | 80 | 120 | 42 |
| 2 | 16 | 320 | 480 | 162 |
| 3 | 64 | 1280 | 1920 | 642 |
| 4 | 256 | 5120 | 7680 | 2562 |
| 5 | 1024 | 20480 | 30720 | 10242 |
| 6 | 4096 | 81920 | 122880 | 40962 |

## The grid is structured...



## Selection of the numerical method

## Eulerian or Semi-Lagrangian?

## Galerkin type

Grid point
Finite volume

## Definition of the control volumes



The control volume associated with the i-th node of the geodesic grid is created by a two step procedure. In the first step, the centers of the triangles and the mid-points of the edges are projected on the surface of the sphere. In the second step, the control volume is defined as a polygon with the vertices located at the projected points

## Arbitrary vertical coordinate

The search for flexible vertical coordinates started in the early stage of the meteorological modelling (forties of the XX century) with some inspirations from other areas of physics including differential geometry and general relativity

The main reason was the problem with representation of terrain in the traditional Eulerian models

The quasi-Lagrangian vertical coordinates in the form which is used currently were proposed by Starr (1946) and Lin $(1996,2004)$

- We define the material coordinate surfaces by assigning a constant value of a hypothetical conservative tracer to any arbitrary initial model levels (sigma, hybrid or any other ...)
-The Lagrangian control volumes defined by these material surfaces are free to float, expand, and compress with the flow as dictated by hydrostatic dynamics
-The Earth's surface in this formalism is considered as material surface fixed in time (in general we can allow, however, the floating lower boundary as well...)
- By choosing the imaginery (better to say hypothetical) tracer that is monotonic function of height and constant on the initial coordinate surfaces the 3-D equations written for arbitrary vertical coordinates (Kasahara, 1974) can be reduced to 2-D form
- Assuming that the increment of values for the conservative tracer between initial levels is constant we can further simplify equations to the form shown in the following slide

$$
\begin{gathered}
\frac{\partial}{\partial t} \delta p+\nabla \mathbf{V} \delta p=0 \\
\frac{\partial}{\partial t} q \delta p+\nabla \mathbf{V} q \delta p=0 \\
\frac{\partial}{\partial t} \Theta \delta p+\nabla \mathbf{V} \Theta \delta p=0 \\
\frac{\partial \mathbf{V}}{\partial t}=-(\zeta+\gamma) \mathbf{n} \times \mathbf{V}-\nabla\left(\frac{1}{2}|\mathbf{V}|^{2}+\phi\right)+\mathcal{D}(\mathbf{V})+\frac{1}{\rho} \nabla p \\
p_{l}=p_{\infty}+\sum_{k=1}^{l} p_{k}
\end{gathered}
$$



Icosahedral model with quasi-Lagrangian arbitrary vertical coordinate

$$
\frac{\partial \mathbf{u}}{\partial t}=-(\zeta+\gamma \mathbf{n}) \times \mathbf{u}-\nabla\left(\frac{|\mathbf{u}|^{2}}{2}+g h\right)
$$

$$
\frac{\partial h^{\star}}{\partial t}+\nabla h^{\star} \mathbf{u}=0
$$

$$
\frac{\partial \varphi_{i}}{\partial t}=-\nabla \varphi_{i} \mathbf{u}+\nabla \cdot\left(\mathbf{K}_{i} \nabla \varphi_{i}\right)+F_{i}\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

The model kernel
$\zeta=\operatorname{Curl}_{n} \mathbf{u}$ equations are in vector invariant form

## Embedded manifold approach

$$
\operatorname{Curl}_{n} \mathbf{u}\left(\mathbf{r}_{s}\right)=\left.\left(\operatorname{curl}_{3} \widehat{\mathbf{u}}(\mathbf{r}) \circ \mathbf{n}(\mathbf{r})\right) \mathbf{n}(\mathbf{r})\right|_{\mathbf{r}=\mathbf{r}_{s}}
$$

$$
\left.\nabla_{s} f \equiv \nabla_{3} \widehat{f}\right|_{\mathbf{r}=\mathbf{r}_{s}}
$$

$$
\operatorname{div} \mathbf{A}=\left.\operatorname{div}_{3} \widehat{\mathbf{A}}\right|_{\mathbf{r}=\mathbf{r}_{s}}
$$

$$
\left.\frac{\partial \widehat{\mathbf{u}}}{\partial t}\right|_{\mathbf{r}=\mathbf{r}_{s}}=-\left.\left[\left(\operatorname{curl}_{3} \widehat{\mathbf{u}}(\mathbf{r}) \circ \mathbf{n}+\gamma\right) \mathbf{n} \times \widehat{\mathbf{u}}\right]\right|_{\mathbf{r}=\mathbf{r}_{s}}-
$$

$$
\left.\nabla_{3}\left[\frac{|\widehat{\mathbf{u}}(\mathbf{r})|^{2}}{2}+g \widehat{h(\mathbf{r})}\right]\right|_{\mathbf{r}=\mathbf{r}_{s}}
$$

$$
\left.\frac{\partial \widehat{h^{\star}}}{\partial t}\right|_{\mathbf{r}=\mathbf{r}_{s}}=-\left.\operatorname{div}_{3} \widehat{\mathbf{u} h^{\star}}\right|_{\mathbf{r}=\mathbf{r}_{s}}
$$

Equations on the sphere written in terms of the cartesian operators acting on the smooth radial extensions of the vector and scalar fields

The finite volume works with averages; the set of equations is thus averaged over the specified control volumes

$$
\frac{\partial\left\langle\left.\widehat{\mathbf{u}}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\Omega}}{\partial t}=-\left\langle\left.\left(\operatorname{curl}_{3} \widehat{\mathbf{u}} \circ \mathbf{n}+\gamma\right)\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\mathrm{n}} \mathbf{n}_{\Omega} \times\left\langle\left.\widehat{\mathbf{u}}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{{ }_{n}}-
$$

$$
\left\langle\left.\nabla_{3}\left(\frac{|\widehat{\mathbf{u}}|^{2}}{2}+g \widehat{h}\right)\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\mathrm{a}},
$$

$$
\frac{\partial\left\langle\left.\widehat{h^{\star}}\right|_{\left.\mathbf{r}=\mathbf{r}_{s}\right\rangle_{\mathrm{a}}} ^{\partial t}=-\left\langle\left.\operatorname{div}_{3} \widehat{\mathbf{u} h^{\star}}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\mathrm{a}}, ~\right.}{}
$$

$$
\begin{gathered}
\left\langle\operatorname{div} \mathbf{u} h^{\star}\right\rangle_{\Omega_{i}}=\left\langle\operatorname{div}_{3} \widehat{\left.\left.\mathbf{u} h^{\star}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\Omega_{i}}=\sum_{j(i)}\left(\mathbf{u} h^{\star}\right)_{i j} \circ \mathbf{b}_{i j}} \begin{array}{l}
\left\langle\nabla_{s} f\right\rangle_{\Omega_{i}}=\left\langle\left.\nabla_{3} \widehat{f}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right\rangle_{\Omega_{i}}=\sum_{j(i)} f_{i j} \mathbf{b}_{i j}-\mathbf{N}_{\Omega_{i}} \\
\left\langle\left(\text { Curl }_{n} \mathbf{u}\right) \circ \mathbf{n}\right\rangle_{\Omega_{i}}=\left\langle\left(\text { curl }\left._{3} \hat{\mathbf{u}}\right|_{\mathbf{r}=\mathbf{r}_{s}}\right) \circ \mathbf{n}\right\rangle_{\Omega_{i}}=\sum_{j(i)} \mathbf{u}_{i j} \circ \mathbf{d}_{i j} \\
\mathbf{b}_{i j}=\left(\mathbf{n}_{b i j}^{1} \delta l_{i j}^{1}+\mathbf{n}_{b i j}^{2} \delta l_{i j}^{2}\right) / S_{i}, \\
\mathbf{d}_{i j}=\left(\boldsymbol{\tau}_{i j}^{1} \delta l_{i j}^{1}+\boldsymbol{\tau}_{i j}^{2} \delta l_{i j}^{2}\right) / S_{i},
\end{array}\right.
\end{gathered}
$$

(interface values are obtained from conservative polynomial reconstruction)

$$
\begin{align*}
& \left\{\begin{array}{lr}
\frac{d}{d t}\left\{u^{x}\right\}=-\mathbf{W}^{x}-\mathbf{G} \mathbf{S}_{x}\{f\} & \begin{array}{c}
\text { Algebraic form of the } \\
\frac{d}{d t}\left\{u^{y}\right\}=-\mathbf{W}^{y}-\mathbf{G S}_{y}\{f\} \\
\frac{d}{d t}\left\{u^{z}\right\}=-\mathbf{W}^{z}-\mathbf{G} \mathbf{S}_{z}\{f\} \\
\frac{d}{d t}\left\{h^{\star}\right\}=-\mathbf{D}_{x}\left\{u^{x} h^{\star}\right\}-\mathbf{D}_{y}\left\{u^{y} h^{\star}\right\}-\mathbf{D}_{z}\left\{u^{z} h^{\star}\right\}
\end{array} \\
f=g\left(h_{s}+h^{\star}\right)+|\mathbf{u}|^{2} / 2
\end{array}\right. \\
& \begin{cases}\mathbf{W}^{x}=\mathbf{z} *\left(\mathcal{N}_{y} *\left\{u^{z}\right\}-\mathcal{N}_{z} *\left\{u^{y}\right\}\right), & \text { on } \\
\mathbf{W}^{y}=\mathbf{z} *\left(\mathcal{N}_{z} *\left\{u^{x}\right\}-\mathcal{N}_{x} *\left\{u^{z}\right\}\right), & \text { e. }\end{cases} \\
& \mathbf{W}^{z}=\mathbf{z} *\left(\mathcal{N}_{x} *\left\{u^{y}\right\}-\mathcal{N}_{y} *\left\{u^{x}\right\}\right),
\end{align*}
$$

## Cosine hill test




## Low order versus High order solution

Time $=48$ days
Time $=48$ days


Low order solution
High order solution

## Test of the nonoscillatory properties of the method



Multiscale signal, superposition of continuous waves and step functions in the longitude direction modulated by a 4-th power of $\cos$ (latitude) in the North-South direction




Advection with ELAD
Advection is mass conserving and stable for Courant numbers up to 2.7


## Mountain flow test



$$
\begin{aligned}
& \frac{\partial \mathbf{u}}{\partial t}=-(\zeta+\gamma \mathbf{n}) \times \mathbf{u}-\nabla\left(\frac{|\mathbf{u}|^{2}}{2}+g h\right) \\
& \frac{\partial h^{\star}}{\partial t}+\nabla h^{\star} \mathbf{u}=0
\end{aligned}
$$



5500

Propagation of the perturbation

Time $=0.75$ days


Good potential for simulation of Tsunami waves


Rossby-Haurvitz wave test
Initial condition



Time $=8$ days



Time $=10$ days


10500

10000

9500

9000

8500

## Motion of the Rossby wave pattern in 24 hrs.



The phase speed of Rossby-Haurvitz wave is correct

## Unstable jet

## Vorticity (polar view)


$\left\langle\left(\operatorname{Curl}_{n} \mathbf{u}\right) \circ \mathbf{n}\right\rangle_{\Omega_{i}}=\left\langle\left(\operatorname{curl}_{3} \hat{\mathbf{u}} \mid \mathbf{r}=\mathbf{r}_{s}\right) \circ \mathbf{n}\right\rangle_{\Omega_{i}}=\sum_{j(i)} \mathbf{u}_{i j} \circ \mathbf{d}_{i j}$


$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\frac{d}{d t}\left\{u^{x}\right\}=-\mathbf{W}^{x}-\mathbf{G S}_{x}\{f\}+\left\{\mathcal{F}_{\mathrm{d}}^{x}(\mathbf{u})\right\} \\
\frac{d}{d t}\left\{u^{y}\right\}=-\mathbf{W}^{y}-\mathbf{G S}_{y}\{f\}+\left\{\mathcal{F}_{\mathrm{d}}^{y}(\mathbf{u})\right\} \\
\frac{d}{d t}\left\{u^{z}\right\}=-\mathbf{W}^{z}-\mathbf{G S}_{z}\{f\}+\left\{\mathcal{F}_{\mathrm{d}}^{z}(\mathbf{u})\right\} \\
\frac{d}{d t}\left\{h^{\star}\right\}=-\mathbf{D}_{x}\left\{u^{x} h^{\star}\right\}-\mathbf{D}_{y}\left\{u^{y} h^{\star}\right\}-\mathbf{D}_{z}\left\{u^{z} h^{\star}\right\}
\end{array}\right. \\
\left\{\begin{array}{l}
\left\{(\Delta \mathbf{u})_{x}\right\}=\mathbf{G S}_{x}^{0} \mathbf{d}+\mathcal{N}_{y} *\left(\mathbf{G S}_{z}^{0} \mathbf{z}\right)-\mathcal{N}_{z} *\left(\mathbf{G S}_{y}^{0} \mathbf{z}\right) \\
\left\{(\Delta \mathbf{u})_{y}\right\}=\mathbf{G S}_{y}^{0} \mathbf{d}+\mathcal{N}_{z} *\left(\mathbf{G S}_{x}^{0} \mathbf{z}\right)-\mathcal{N}_{x} *\left(\mathbf{G S}_{z}^{0} \mathbf{z}\right) \\
\left\{(\Delta \mathbf{u})_{z}\right\}=\mathbf{G S}_{z}^{0} \mathbf{d}+\mathcal{N}_{x} *\left(\mathbf{G S}_{y}^{0} \mathbf{z}\right)-\mathcal{N}_{y} *\left(\mathbf{G S}_{x}^{0} \mathbf{z}\right)
\end{array}\right. \\
\mathbf{d}=\{\operatorname{div} \mathbf{u}\}=\mathbf{G}_{x}^{0}\left\{u^{x}\right\}+\mathbf{G}_{y}^{0}\left\{u^{y}\right\}+\mathbf{G}_{z}^{0}\left\{u^{z}\right\}
\end{array}\right\} \begin{aligned}
& \mathbf{z}=\left\{\left(C u r l_{n} \mathbf{u}\right) \circ \mathbf{n}\right\}=\mathbf{T}_{x}^{0}\left\{u^{x}\right\}+\mathbf{T}_{y}^{0}\left\{u^{y}\right\}+\mathbf{T}_{z}^{0}\left\{u^{z}\right\}
\end{aligned}
$$

$$
\Delta \mathbf{u}=\nabla \operatorname{div} \mathbf{u}-\operatorname{Curl}^{\operatorname{Curl}}{ }_{n} \mathbf{u}
$$





## Technical aspects

The split-explicit scheme with Runge-Kutta method is used to advance the solution in time

Remapping is performed using every few time steps

This algorithm is more accurate and possibly much faster on massively parallel machines when compared to the implicit or semi-implicit scheme

The code is written using the formalism of sparse matrices in order to make it accessible for MATHEMATICA, MATLAB and FORTRAN


