

Progress and Plans, Issues and Opportunities

Keith Thompson and Hal Ritchie Bill Merryfield and Dan Wright

Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)

Fondation canadienne pour les sciences du climat et de l'atmosphère (FCSCA)

Applications of a Coupled Atmosphere-Ocean Forecast System

- Sustaining a healthy and productive marine environment through ecosystem modeling and informed fisheries management
- Short term forecasting of currents and sea ice for search and rescue, navigation, ship routing and pollution containment
- Short term forecasting of maritime weather such as hurricanes and "bomb" storms, and accompanying storm surges and flooding
- Assist Canadian exercises and operations in regions of strategic interest (e.g., the Arctic Archipelago)
- Providing multi-season and multi-year climate predictions to assist with planning of seasonally dependent economic activities such as agriculture, oil refining, hydro-electric generation and transportation

Marine Prediction is Difficult

Managing Uncertainty: The Need for Data Assimilation

GOAPP in a Nutshell

CFCAS research network, close to \$3 Million from CFCAS

- In-kind (EC, DFO, DND) ~ \$975 k/yr over 4 years
- Objective: Improve forecasts of the coupled atmosphere-ocean system on time-scales of days to decades, and space scales of tens of kilometers to global
- Outcomes: Better models and assimilation schemes, a deeper understanding of contributors and limits to predictability
- Complements the EC-DFO-DND Canadian Operational Network of Coupled Environmental PredicTion Systems (CONCEPTS) and EC's operational seasonal forecast activity

Structure of the Research

Two themes distinguished by time-scale:

Theme I:	Days to Seasons				
Theme II:	Seasons to Decades				

These two themes reflect:

Present expertise in weather and climate modelling and prediction in Canada

Potential advantages of a multi-model approach

Working toward a **seamless prediction capability** that bridges these time-scales (consistent with developing international activities e.g. THORPEX, WCRP)

Geographical Distribution of the 18 GOAPP Co-Investigators

20 Collaborators from EC and DFO

The GOAPP Researchers

Highly Qualified Personnel

Trainees	2009	Anticipated Total
Research Associates	7	8
Post Doctoral Fellows	5	6
PhD	6	12
Masters	9	17
Undergraduates	2	7
Total	29	50

Theme I Projects: Days to Seasons

Ocean Modeling and Data Assimilation

- Suppression of bias and drift in ocean model components
- Statistics of observed variability for model testing and improvement
- Multivariate assimilation of altimeter and Argo data
- Ocean reanalysis and forecasting
- Modelling and assimilation of sea ice
- Assessing the capability of a nested-grid shelf circulation model for the Eastern Canadian Shelf

Coupled AO Modeling and Data Assimilation

- Assimilation into coupled atmosphere-ocean models
- Studies on joint assimilation into coupled models

Theme I: Ocean Modelling and Assimilation

- Suppression of bias and drift in ocean model components
- Statistics of observed variability for model testing and improvement
- Multivariate assimilation of altimeter and Argo data
- Ocean reanalysis and forecasting
- Modelling and assimilation of sea ice
- Assessing the capability of a nestedgrid shelf circulation model for the Eastern Canadian Shelf

Inter-Annual Sea-Level RMS 1993-2004 (m)

Tropical Pacific Variability

SSH and SST in the equatorial Pacific are well simulated ¹³ WITH REANALYSIS ATMOSPHERIC FORCING.

Potential Predictability in North Pacific SST

Black line shows theoretical position of Rossby wave front, generated at the coast 3y earlier by ENSO event.

Note correspondence of the black line with maxima in the simulated SST anomaly.

For example, Rossby waves take 3-5y to propagate from coast to OWSP, implying predictability in the northeast Pacific.

Gulf Stream separation problems

The old nudged model results have currents significantly too weak in the sub-polar gyre. The new result is significantly improved in spite of greatly reduced nudging.

AGRIF test of ¹/₄ degree NA with a 1/12 degree embedded "Gulf Stream region"

This surface temperature Illustrates results after 9 years of prognostic

- Integration with no 16 nudging. Major problems
 - Commonly occur within The first 5 years.

More work is needed but this is a major step forward

Assimilating Altimeter and ARGO Data: North Atlantic Example

- \geq 1/3 degree ocean model with 23 levels.
- Daily atmospheric forcing from NCEP reanalysis.
- > Assimilate Argo and altimeter data, 2003-5.
- > 3D-Var extension of Cooper-Haines method.
- The DA scheme is both evolutive and efficient.

Forecast Skill For Sea Level

Forecast Skill for Temperature and Salinity

Downscaling from Ocean to Shelf

Objective: to develop a high-resolution (1/12 degree), 3D shelf circulation model for the eastern Canadian shelf to be embedded within a larger-scale (1/4 degree) model of the North Atlantic Ocean.

Subsurface (100 m) temperatures from 1997 to 1999 produced by the outer submodel of the nested-grid shelf circulation system for the eastern Canadian shelf

Independent Assimilation into Coupled Atmosphere Ocean Models

✓ Data assimilation into a coupled model raises new issues.

- Recent work focused on parameter estimation to improve heat, momentum and moisture exchange between atmosphere and the ocean. Anticipate significant improvements in quality of the analyses.
- **V** EC is coupling GEM to Mercator's NEMO ocean system.
- Incremental formulation being developed by GOAPP: independent assimilation for ocean and atmosphere observations in an "inner loop" but full coupled model integration.

Joint Assimilation into Coupled Atmosphere Ocean Models

Using observations from either the atmosphere or ocean to simultaneously update both

- Initial work focused on covariance between atmosphere and ocean state variables – in CCCma coupled model and NCEP reanalyses.
- Interesting results from Redundancy Analysis:
- Clearer, more robust patterns of co-variability
- Identification of causal relationships to guide joint data assimilation.
- Simplified coupled state space model being used to test innovative strategies for joint data assimilation

GOAPP Theme II Projects: Seasons to Decades

Analysis and Mechanisms

- Pacific Decadal Oscillation
- □ Southern and Northern Annular Modes

Predictability of the Coupled System

Prediction

"<u>Climate</u>

forecasting

- **D** Potential Predictability Of Current And Future Climates
- Prognostic predictability from ensembles of coupled model simulations

- □ Coupled Model Initialization
- □ The Coupled Model Historical Forecasting Project
- □ Forecast Combination, Calibration and Verification
- Sensitivity of Climate Forecasts to Initialization of Land Surface

Theme I Ocean bias correction for climate forecasts

What are the origins of predictability?

What are the limits of predictability?

Climate forecast horizons

timescale	sources of predictability
Subseasonal	Madden-Julian Oscillation
~15-60 days	Land surface "memory"
Seasonal to interannual	El Niño-Southern Oscillation (ENSO)
~2 months-2 years	
Interannual to Multidecadal	Atlantic Multidecadal Oscillation
~2-20 years	
Multidecadal to Centennial	Anthropogenic forcing trends
~20-100 years	

Climate forecasting in Canada

Current operational system based on HFP2:

- 4 AGCMs (AGCM2, AGCM3, SEF, GEM)
- ensemble size 4×10
- Two-tier: persisted SSTA
- 4 month forecasts
- statistical model used at longer leads

GOAPP develop one-tier forecast system

- Future SSTs predicted as part of forecast → potential for skill at much longer leads
- Requires coupled climate model

The Coupled Model Historical Forecasting Project (CHFP)

CHFP1 initialization

*simplest procedure demonstrated to have much skill

CHFP1 results

CHFP1 vs HFP2

Correlation skill Surface air temperature over Canada 1-month lead

$\rightarrow \underline{\text{CHFP1 competitive with}} \\ \underline{\text{two-tier HFP2 despite}} \\ \underline{\text{smaller ensemble size}}$

Merryfield, W. J., W.-S. Lee, G. J. Boer, V. V. Kharin, B. Pal, J. F. Scinocca and G. M. Flato, 2009: The first Coupled Historical Forecasting Project (CHFP1). *Atmosphere-Ocean*, submitted.

Model improvements: ENSO

Monthly SSTA standard deviation

Observations: HadISST 1970-99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

AGCM3+OGCM3 CHFP1

C	0 0	.1 0	.2 0	.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2

AGCM3+OGCM4 CHFP2₁

AGCM4+OGCM4 CHFP2₂

Impact of model improvements

• Illustration: 1982/83 El Niño, 11 month lead

• While such "hits" not always possible (even in theory), a strong El Niño is now within the range of possibilities that can be forecast

Impact of Model improvements on ENSO Prediction

Mean NINO3.4 correlation skill of rolling 3-month forecasts $Dec \rightarrow Nov$ $Mar \rightarrow Feb$ $Jun \rightarrow May$ $Sep \rightarrow Aug$ SST nudging only1972-2001

Impact of Model improvements on ENSO Prediction

Mean NINO3.4 correlation skill of rolling 3-month forecasts $Dec \rightarrow Nov$ $Mar \rightarrow Feb$ $Jun \rightarrow May$ $Sep \rightarrow Aug$ SST nudging only1972-2001

Impact of Model improvements on ENSO Prediction

Mean NINO3.4 correlation skill of rolling 3-month forecasts $Dec \rightarrow Nov$ $Mar \rightarrow Feb$ $Jun \rightarrow May$ $Sep \rightarrow Aug$ SST nudging only1972-2001

Atmospheric Data Assimilation

Incremental Reanalysis Update (IRU) assimilation:

- run model freely for 3h ("forecast") to reanalysis time R
- \succ difference with reanalysis \rightarrow "centered" increments $\Delta \mathbf{x}^{a}$
- rewind
- rerun for 6h adding analysis increments as forcing to model equations:

$$\frac{d\mathbf{x}}{dt} = M(\mathbf{x}) + h(t)\Delta \mathbf{x}^{\mathbf{a}}$$

Impacts of AGCM assimilation: Improved 1st month skill

Surface temperature correlation skill First forecast month from 1 Sep 1980-2001

SST nudging only

SST nudging + AGCM assimilation

GLOBAL:0.29LAND:0.09OCEAN:0.37

GLOBAL:0.51LAND:0.33OCEAN:0.58

Impacts of AGCM assimilation: Improved ocean initialization

Correlation coefficients vs obs: equatorial Pacific (5S-5N)

colours: SST nudging + AGCM assimilation

black: SST nudging only

thermocline depth 1.0 0.8 **Correlation Coefficient** 0.6 0.4 WS15 0.2 WS16 WS17 WS18 0.0 160E 140E 140W 120W 100W 180 160W Longitude

Ocean Data Assimilation

T assimilation

- procedure of Tang et al. JGR 2004
- off-line variational assimilation of 3D gridded analyses

S assimilation

- procedure of Troccoli et al. MWR 2002
- preservation of T-S relationship: prevents spurious convection, etc.

Land surface initialization

- CCCma collaboration with U Guelph
- Strategy: drive CLASS land surface model used in CGCM off-line with *bias-corrected* reanalysis

Case study: 2001 drought

Observed Palmer Drought Severity Index: JJA 2001

Soil moisture forecast initialization

Sea ice initialization

Nudge to Hadisst observations

Sea ice concentration: August 1976

Hadisst

Forecast initial conditons

0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.900.951.00 0.0 1.0

Sea ice concentration

Anomaly correlation skill score

Sep, lead=0, WS12N

2N HADISST SICN M09 I=08 L=0 1972-2001 CORR(U)=0.6975 L=NA 0=0.698

'S12N HADISST SICN M09 I=08 L=0 1972-2001 CORR(U)=0.4941 L=NA 0=0.494

CHFP2 initialization

Contributions to international activities

IPCC: From projection to prediction

Schematic of the two focus areas of CMIP5

Taylor et al.: CMIP5 Experiment Design

Future CMC Seasonal forecasts?

- ➢ GOAPP ends in 2010
- CHFP2 intended to be transitionable to operations → planning, resource allocation needed
- CCCma well situated to contribute to CMIP5 predictions → interannual-decadal predictions also could potentially become operational

Future CMC Seasonal forecasts?

- ➢ GOAPP ends in 2010
- CHFP2 intended to be transitionable to operations → planning, resource allocation needed
- CCCma well situated to contribute to CMIP5 predictions → interannual-decadal predictions also could potentially become operational

What has GOAPP Delivered?

Expertise in Critical Areas

- Ocean, coupled and coastal data assimilation
- Seasonal forecasting
- Land surface processes modelling and validation
- Adding value to forecasts (downscaling, statistical enhancement of forecasts)

Ocean Hindcasts

Reconstructions for the North Atlantic and North Pacific

Access of Government Researchers to the University Environment

- Interaction with students and university faculty
- Helping shape the next generation of HQP
- Improving connections among departments (e.g., EC, DFO, DND)

Funding

- Cost-sharing to support key positions
- Access to university infrastructure, computers, support staff

Development of Operational Systems

- Pre-operational forecast system for ocean weather (CFCAS supplementary funding)
- Seasonal Forecasts Using Coupled Models (CCCma)

Multiple agency (EC, DFO, DND) interest in coupled atmosphere-ice-ocean prediction has led to the establishment of

CONCEPTS: Canadian Operational Network of Coupled Environmental PredicTion Systems

To coordinate the national development and implementation of ocean models, DFO has established

COMDA: Centre for Ocean Model Development and Application

> Theme I of GOAPP contributes to, and benefits from, CONCEPTS.

After CHFP2

Transition to EC operations?

- will need expanded set of retrospective forecasts
- retention of HQP crucial

Ongoing R & D

- Theme I & II research providing innovative bases for further forecast system improvements
- Bias removal through spectral nudging (Theme I)
- Data assimilation (Tang UNBC)
- Nonlinear forecast post-processing (Hsieh UBC)

Issues and Opportunities

- GOAPP finishes December 2010
- Delivering products hinges on retention of GOAPP's newly trained HQP
- Need to better coordinate research in the government and academic sectors in order to maximize use of future funding
 - ?Resurrect and expand the subvention programs for funding targeted research in universities
 - ?Enable academia to play more active role in CONCEPTS and seasonal to decadal prediction